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ABSTRACT

We derive the closed form expression for the bit error probability of asynchronous
dense WDM systems employing an external QOK modulator. Our model is based upon a
close approximation of the optical Fabry-Perot filter in the recetver as a single-pole RC
filter for signals that are bandlimitr . & Fequency band approximately equal to one
sixtieth of the Fabry-Perot filter's free spect . ' rurge. Our model can handle bit rates up to

2.5 Gb/s for a free spectral range of 3800 GHz and up to 5 Gb/s when the power penalty

is 1 dB or less.
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L INTRODUCTION

Asynchronous wavelength division multiplexing (WDM) systems have been
increasingly proposed as an attractive alternative to coherent optical frequency division
multiplexing (FDM) systems [Ref. 1-5]. Although asynchronous WDM systems with
direct detection do not have the channel capacity of coherent optical FDM systems, they
are much less costly to implement. Furthermore, present filter technology enables the
designers to tightly pack the channel, resulting in asynchronous dense WDM systems that
can provide aggregate bit rates of many terabits per second (1 Tb/s = 10" b/s).
Asynchronous dense WDM systems are particularly attractive in the area of undersea
surveillance where hundreds of sensors and data collection sites are envisioned being
merged onto single-fiber superhighways through massive data fusion. Other applications
call for relatively low-bandwidth data collection over many months to be dumped quickly
to a remote recording site in a matter of minutes. This "collection-and-dumped"”
compression can demand total data rates on the order of hundreds of Gb/s. Long distance
between data collection sites and a remote recording site requires the use of optical
amplifiers. Therefore, it is necessary to pack all channels within the optical amplifier
bandwidth.

An asynchronous dense WDM receiver with on-off-keying (OOK) modulation can

be modeled as shown in Fig. 1. Conceptually, the analysis involves two main operations:




1) a convolution operation to evaluate the signal at the output of the optical filter, a
Fabry-Perot (FP) filter in our investigation, and 2) the integration of the output of the
photodetector. Evaluation of bit error probability by the numerical analysis of these two
operations has been carried out in [Ref. 6], with a number of approximations made to
reduce the computational complexity. In this investigation the FP filter is shown to be
well approximated by an RC filter within the frequency range | /- f,| < FSR/20%, where
FSR is the free spectral range of the FP filter [Ref. 7] and f, is the FP filter center
frequency. For example, given FSR = 3800 GHz, the approximation works very well for
| f-f,|<60.5 GHz; that is, the effects of adjacent channels within a 121 GHz bandwidth
centered at f, must be included, while all others can be neglected. This simple model
agrees well with [Ref. 6] as demonstrated in Section III. Furthermore, this model enables
us to obtain a closed form analytical expression for the bit error probability for which
numerical results can be obtained with little effort. Our investigation shows that this
simple model provides accurate results as compared to those in [Ref. 6] for bit rates up to
2.5 Gb/s when the effects of two adjacent channels are included with FSR = 3800 GHz.
Actually, when the power penalty relative to single channel operation is 1 dB or less, there
is virtually no difference in the effect of four or two adjacent channels. Thus, for this
power penalty criterion, this simple model can handle bit rates up to 5 Gb/s for a FP filter's
FSR = 3800 GHz.

In Section II the closed form expression for the decision variable, and consequently,

the bit error probability assuming all channels are bit asynchronous as in [Ref. 6] is




derived. Section III presents the numerical results which include the bit error probability
versus the signal-to-noise ratio as function of the FP filter bandwidth and channel spacing,
and the power penalty (relative to single channel operation without filtering or with
filtering but no intersymbol interference) versus the channel spacing as a function of the

bandwidth. Finally, a summary of results appears in Section I'V.




II. ANALYSIS

The receiver model for the asynchronous dense WDM system is shown in Fig. 1.
The desired signal is filtered by a Fabry-Perot (FP) filter that rejects adjacent channels.
The photodetector is assumed to have a responsivity & (A/W). The detected current is
amplified by a low noise amplifier that contributes a postdetection thermal noise n(f) with
spectral density N, (A”Hz). The decision variable at the output of the integration is
compared to a threshold o to determine whether a bit zero or bit one was present.

A. INPUT SIGNAL
For convenience, we designate channel O as the desired channel, and channel & as
an adjacent channel where k = -MJ/2, .., -1, 1, ..., M2 with M an even integer. We

consider the equivalent lowpass (complex envelope) data signal in channel 0 and channel £

as follows:
0
bo(t) = 13 boi Pr(t—iT) (1)
—_ 2 W (—Tk) )
be(t) = X by /% Pr(t— (IT+ 1))
=L
where

T: bit duration
b,,€ {0,1}: bit in channel 0 in the time interval (i7, (/+1)T)




b,; € {0,e/} is the * bit in channel k in the time interval (/7 + i, (/ + 1) T+ 1)
¢, : a phase offset between channel k and channel 0 and is assumed to be uniformly

distributed in (0, 2x) radians

o, : radian frequency spacing between channel ¥ and channel 0 with o, = -0,
T« : is the time delay “etween channel k¥ and channel 0 and is assumed to be
uniformly distributed in (0,T).

The function P(t - iT) is defined as

. 1, iTst<(i+1)T
Prt—iT)={y’ oterwise @)
In both (1) and (2), the non-negative integers L, and L represent the number of bits in
channel 0 and &, respectively, that proceed the detected bits b,,, The received
asynchroncus dense WDM equivalent lowpass signal at the input of the FP filter is given

by

@)= /P bo(t)+k:)\_5;2ﬂ2 JP bi(®) @
k20

where P is the received optical power.




B. FABRY-PEROT FILTERED OUTPUT SIGNAL
The FP filter can be characterized by the following equivalent lowpass transfer

function [Ref.1,7]

1-4-p
H(f) - l_pe‘fzﬂ’/m ¢ l-p

- 1-p . 1-A-p )

I-peos(Zepsin(r) 1P

where p is the p er reflectivity, A is the power absorption loss (zero for an ideal FP

filter) and FSR is the free spectral range. For | f| < FSR/20% and assuming A = 0, we can

approximate H ( f) as follow:
H(f)= =—1
(I-PHy7sR mf l‘*f(i-zp?;sx"
1
= , | fl<FSRrox 6a
iz ©)
where
FSR(1-p)
= 5 (6b)

The free spectral range FSR can be related to the full width at half maximum (FWHM)

bandwidth B and the finesse F of the FP filter as

FSR = “fp 2 _BF )




Thus if the signal is bandlimited to | /! < FSR/20x, we can truly approximate (5) with a

single-pole RC filter with the following transfer function and impulse response

H(f) =15 ®)
h(ty=ce™, t>0 )

Figures 2a-b show the magnitude and phase (radians) of H( f) of the FP filter in (5) and
its single-pole RC filter approximation given in (8) forp =0.99, F=312.6, B=12.16
GHz and FSR = 3800 GHz. Note that as the frequency increases, the phases of the FP
filter and the RC filter differ markedly, but the magnitudes of their transfer functions
remain identical and attenuate rapidly. When | f | > FSR/20x, the magnitude of H( 1) is
very small, and therefore, the effect of adjacent channel interference beyond this frequency
range is negligible. Fig. 3 shows the normalized impulse response of both FP and
single-pole RC filters. In summary, the above approximation is valid for asynchronous
dense WDM analysis when the filter finess F is large or equivalently the FWHM
bandwidth Bis small since the equivalent lowpass signal must be bandlimited to about
| £ | <FSR/20x.

This approximation has been used in [Ref. 5] to study spectral efficiency of optical

FDM/ASK systems, which involves the evaluation of the decision variable for worst-case




analysis using the eye diagram technique. Since we are interested in the detected bit 4
in the time interval ( 0,7'), we consider the output filtered signal s(¢),0 <t < T given by

s() =sp(O)+sisi(®) +s4c1(t), 0<t<T (10)

where
sg (9): desired signal
5,5 ( ): intersymbol interference (ISI) signal
8, (9): adjacent channel interference (ACI) signal
These signals are evaluated using (4) and (9) as follows (detailed derivations in Appendix

A):

s8(8) = VP bo.o ({ h(t - A)d\.

=ﬁ5bo,o(1—e“’), 0<t<T an
-1 @+nr
si(t)=JP 2 boi [ he-Mdh

-1 , )
- ﬁe—ct | 3 bo,i(e(wl)cT_ewT), 0<t<T (12)

i=Lg




2 =2 (I+1)T'Ptlg ]
=P 2 | he-n)eedog, 0<t<T
k=M 1L T, :
t
+ bk,-—l I h(t - A.)@jmka.t")dk O<t<
T+t
Tk .
+ bi TL h(t — )e™ g, nw<t<T
- k

t
+bro | h(t- Ve~ ]
Tx

w<t<T

- S —ct €% (ctjo )T+t ( p(c+jo )T _
JP "g [IéL 70, Dby e it ¢ e 1)

+1(0, Te)bi e~ er (e©Hor _ gletjor)-Tr))

)
2

+(te, Dby-1 €™ ﬁﬁf e(CHRR (] — g~leton)

c

e oKk
ot 1

+2(tk, Dbyo e™ < (e@or) — gleortey]  (13)

[4

O0<t<T

Lnstst | :
where T (21,22) = {, otherwiss 1S @ unit pulse between t, and 1,




The FP filtered output s(f) is detected by the photodetector which produces a

current of @ | s(7) F Amps. This current plus additive white postdetection thermal noise

current from the amplifier is integrated by the integrator to obtain a decision variable for
the threshold detector.
C. DECISION VARIABLES

The decision variable Y appearing at the integrator output consists of the signal

component X and noise component N

Y=X+N (14)
where
T
x=| els@l|ar (15)
0
T
N =£ n(t)dt (16)

We note that N is a zero mean Gaussian random variable with variance N,7. Substituting

(10)~(13) into (15) we obtain the signal component X as a function of the three parameters
Tt,c7, and .7, which represent the effect of intersymbol interference and adjacent
channel interference.

X= # PTb,[1-%(1-e~T)+5 (1 -e %))

+ 4 PT(I e-ZcT)[ z bo, (e(x+l)cT_etcT)]2

10




%’ﬂ(l _e..zcr) | "'ﬁ ﬁ b“ e’"”‘" e(c+j(nk)(lT+1k)(e(C+}ﬁ)k)T 1)]2
2cT b==M2 I=—L 1y

pr M2 M2 by bl eTOREmm) o
+ f"; Z @ om Jeromks_, ]

+p B PT Azllz M2 bk'.lb e"('”k‘k'“"""') (e-(cﬂmm)':-l) (e R-T+y)
T b=—M2 m=-MP2 (42E)(122) 48

(e""’"k)"-l) elcsom)-T+im) (e‘z"“-'—l ) e CHOR=THY) o (cjomX-T+sm)
- 2

o
1%

f AZI/Z Aﬁz br-1by 4 (e7¥72—e~%T) e FOrTomtm)
+ —— 5
T M2 =2 2145215

[e©HoR(] — g-HanT)(cjanyin(] — g~comT)]

%ﬂz M2 byoby o eTOREEMM) T 0r=0m ]
+ f CT | i J‘”k’”"’)r _‘J(uk-om)tg
b=-M2 m=M2  ( HEN52R) ey m

+ PP PT Azl/2 M2 by b,',,'o eFRpTomn) (oo, (e~(comT_ g~(ctjomrg)
.
T b=n m=—M12 (142E)(1-j22) 1422

elcFomyim (g~cFoT_ g~Jor)g) (e~ %T—e~27g) (YR glcomyem
B 2

[}
152
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iy 2PT Re { i{ﬁ A§2 be-1b5 e @kt omtm)(|_ ooy oY)y
T k=—MI2 m=-M/2 ( 1+j:§-)( 122
kw0 P
[ e-(NiOm)'g_ e-(l-‘wul)f (e'ZRg_e-ZCT) e(com)im
14j=2 - 2 1}

+ 2 2R, ¢ B MF P bubn, NI T L) RO
CT e { .”k .00y
k:;t)ﬂz m=;£l/2 =L Ay=X15=

(1—e(cHomltm)  (}_o-2ctm) glcFomX-T+em)
142 - 2

[

l\ﬁz -g eﬂ(okﬁ-untm)(e(cﬂhg)f_ 1) (o XiITHy)
m=—MP2 =L (4122
)

v ZlRe( ¥
=2

bub;,'_,(e‘z""" —e~2T) (]—g~(cFomT) g(cFomyim

[ 2

b Ub;., 0 (e~(comytm_ e-(‘-"':fﬂm)T)
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12 2 x .
2PT &/ Ok omIm)
+ f cT Re { R 1 o
k=-MI2 m=-M/2 (1+j=X1-J=~
w0 me0

bk.—lb:.’q(e-(mk)‘" —e TNk (|—e~(cTOmT) glcJom)im

[

)
1=

br-1b}, (XM —"3W) (]—g=(cTomT) CH-To1P) gloyumym
2

br-1bpo(eNOkOM kg0 om)m)
+

, (0p~wm)
%=

bk,.lb;,’o(e'(‘“’*)"' ~e LK) (omyim

1-j=%

bi-1 b;‘o (e-'(wbm)m_e-(‘-“ﬂm)tk)e(cﬂhk)(-rnk)

1+~

bk,-l b:,'o(e"z"""—e-zﬂk ) e(eHo)=T4t) S(cfomyem
2

(The above whole term will be zero if Wi = W py).

+ 7 PT 1-"0.0(;‘-9"”)2 'i! bo (DT — gicT)
¢ i=—Lg ’
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mee { gz f boobu (l_¢-€7)2 e‘?"kik(e(wﬂk)f_l) e(”f"kx”*‘k)

e=-M2 =L 2 (15%)
[
boobi-1 €Tk _ etk | [_e~CTepi (1~ k)2e(CFRRTHY)
+ Red 1 [ Rl 3 - K - 2
kr-H-Mn 14— j= 1--£

boobi-1 670Kk (2 k—2e~T—¢ 2k 4¢~2¢T)(] ¢ (RIT) (0L
+ >

k=2 1= 2

Agz boobrg €Tk _ JmT_ sy _ eempn_g<esopT
+ ..k .k K k
k‘-'wlz 4= J= 1=

(26 "k-2e™T—e >k 1¢~2T) (L%

2 1}

+ £ ZT i bo(e™VT — gieT)

I-—a

by (1-~%T) (eCPRT_)) oCHORNT o
Re{ & F ude™ ( )
k‘—"—#Z =L 2(14:]7

bg-1 [ e k—e~% (e k—e k) e

+ & -

k=M l+jE 5 1-j5E 2
[ ]

| (e h—eTke 2T (1 o))
+

3 ]

+ Agz bro '“k-e'f"k'ke'("“f"k)r e~ k—ek e-zcr]}

=2 l+1— 1% 2 a7
where T, = min (T, Tm) Tg = max(Tk, Tm)
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D. BIT ERROR PROBABILITY

For a detection threshold o and an IS/ACI bit pattem b = {b,,, b,, }; i =-L,, ..-1;
I=-L, .., 0, k=-M_2, ., M2 k=0, the conditional bit error probat lity of the OOK
signal represented by the Gaussian random variable ¥ in (14)-(16) is given by [Ref. 8]

P.(b)= 2Q(X}ff’f") 2Q("‘"’“‘"’) as)

where Q (X) is defined as

0w == [ e dy

J2n (19)

and X, and X, are the values of X in (17) for b,, = 0 and b,, = 1, respectively. The
average bit error probability P, is obtained by taking the expected value of P, (b) in (18)
over all bit patterns 5. The minimum bit error probability is obtained by optimizing over

the threshold o.. In summary, given o, we calculate the following expectations:
P, =§ {P(b)} (20)
Pe, min =m&n§ {Pe(b)}

. 1
o 2M(b+l)+Lo oM z“e’m p ( )

1S




P(®) = 305 MM

2n T
(f...11.. C-Xo(0-aa2 - - 0202 T2 .- TA2)

2% T
IM g IM (“)’Q(X JNO—TM = )d¢-M/2~..d¢M/2 dt-Mn---dtM/z]

@n
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1. NUMERICAL RESULTS

In this section we present the numerical results for a) bit error probability versus
signal-to-noise ratio Z = RPJT/N, as a function of the normalized channel spacing
(normalized to the bit rate)

ol
I=22=0NT @

where Af= @,/ 2ntk is the equal channel spacing in Hz, and b) power penalty versus
normalized channel spacing 7 as a function of the FP filter parameter c7'=(n/ fp )BT
where B is the filter full width at half maximum bandwidth(FWHM). For our model to be

valid we set M =2, that is, we constraint the signal to be bandlimited to within two
adjacent channels, thus we incorporate the degradation hv the two nearest adjacent
channels. We observe that for bit rates of 1 Gb/s or less, ow model is valid up to M = 10

and very little difference is observed between M =2 and M =10. Also, we observe that
there is little difference between M =2 and M = 4 when 1210 for bit rates up to 3 Gb/s.
Inali results weset L,=2 and L=1.

Figures 4-5 show the minimum bit error probability versus signal-to-noise ratio

(Z) for cT = 5 and 10, respectively. Along with each curve, we also show that of the
synchronous case, i,e, Tt =0,L, = 2 and L = 0, and that of a single channel (SC)
operation without filtering or with filtering but without IS/. In Fig. 4 we observe that a

large degradation occurs due to IS/ for ¢T = 5 which represents a narrowband filter. As

17




_

the FP filter bandwidth is made larger as in Fig. 5 with ¢T = 10, the IS/ is reduced but the
ACI increases.
In our model, we are constrained to M = 2 for the case under consideration. We

use an FP filter with FWHM B=12.16 GHz, free spectral range FSR = 3800 GHz, finess
F=xx [p /(1 -p) = FSR/B = 312.6, and ¢ = 38.4 GHz; I/T = 2.56 Gb/s, and cT = 15. If

the power penalty related to single channel operation is to be less than 1 dB, then by

Fig 6, a minimum normalized channel spacing of / = 12 must be used. Equivalendy

from [Eq. (22)], we could use Af = I/T = 12*2.56 GHz = 30.4 GHz, (i.e. the channel

spacing is a multiple of the bit rate). In this model the farthest adajcent channel for M= 2
is twice the channel spacing which is 60.8 GHz. This verifies the assumption | f-f, | <
FSR/20r = 60.5 GHz, where f, is the FP filter center frequency. This result agrees well
with that in [Ref. 6; Figs. 6,9, M/F = 0.4, a = 0.2]. Thus we incorporate the degradation
caused by the two nearest adjacent channels. We observe that for bit ratcs of 1 Gb/s or
less, our model is valid up to M = 10, and very little difference is observed between M =

2and M = 10. Also, we observe that there is little difference between M =2 and M = 4
when I 2 10 for bit rates up to 3 Gb/s. In all results we setL,=2 and L = I.
Figure 6 also shows the power penalty for an asynchronous dense WDM system

relative to a single channel operation at the minimum bit error probability of 10"*. This is
the required additional signal power (dBW) for the asynchronous dense WDM system to
be able to operate at the 10"* bit error probability achieved in the single channel system
with a SNR=12dB. The asynchronous dense WDM system is /S/-limited at 2.15 dB, 0.95

dB, 0.6 dB, and 0.5 dB in power penalty for cT = 5, 10, 15, and 20, respectively. It is

18




seen that for a 2.3 dB power penalty, the normalized channel spacing can be as close as /

= 6 (i.e., a channel spacing of six times the bit rate) for cT = 5. If the power penalty
criterion is 1 dB, the normalized channel spacing is / = 12 for cT = 10, 15, 20. We remark
that although the exact transfer functions of the FP filter is used in [Ref. 6], a number of

approximation have been made to obtain numerical results. The approximations are 1)
the IS/ is obtained by modeling FP filter as a single-pole RC filter [Ref. 6, Eqs. (4) and
(36)], 2) approximating the finite integration with an infinite integration in the calculation
of ACI [Ref. 6, Eq. (15)], and 3) the beat interference is ignored. On the other hand, the
IST and ACI in our investigation are obtained by modeling the FP filter as a single-pole RC
filter, using finite integration and including the beat interference. Since the results in our
investigation and in [Ref. 6] agree well, we conclude that approximations are quite valid.
We also note that our results also agree well with the simulation carried out in [Ref 1,
Fig. 17].

The above numerical results shown in Figs. 4-6 are obtained with an optimized

threshold setting. Figure 7 shows the power penalty for fixed threshold o = # P7/2 which

is the same optimum threshold for single channel operation (midpoint between the
received power for bit zero and bit one). It is seen that the performance of an
asynchronous dense WDM system is quite sensitive to o for a narrow band filter. An
additional 1.5 dB is observed for ¢cT = 5 for / > 8, and 0.4 dB for ¢T = 10 for I > 12.

Negligible degradation is observed for ¢7'= 15, 20 for / > 16.

19




Figures 8-9 show the power penalty versus normalized channel spacing as a function
of FP filter parameter c7 for the worst-case analysis with optimal threshold and fixed
threshold, respectively. The worst-case bit pattern is fixed to produce the minimum X
and maximum X, where X, and X, are the values of X in Appendix-A equation (4-21)
with b, ,= 1 and by, = O respectively.

We observe that the power penalty for the worst-case analysis is only slightly larger
than that of the exact analysis for /> 10 shown in Fig. 6. Similarly the power penalty for
the worst-case analysis with fixed threshold is only slightly larger than that of the exact
analysis with fixed threshold for 7 > 10 shown is Fig. 7. The reason for this is that for
large channel spacing (I > 10), the ACI effect is small, so the ACI bit pattern has a small
influence on the power penalty.

Figure 10 shows ti:e normalized optimal threshold for the exact analysis shown in
Fig. 6. It is observed that a 0.4 for 7 > 10. Note that the normalized optimal threshold
for the single channel operation is o = 0.5.
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IV. CONCLUSIONS

We have presented a simple model for the analysis of asynchronous dense WDM
systems employing an external OOK modulator. The only approximation that we use

involves the modeling of the Fabry-Perot filter by a single-pole RC filter assuming the
equivalent lowpass signal is bandlimited to the frequency range || < FSR/20r. This
model enables us to obtain a closed form expression for the bit error probability which

previously could only be obtained via numerical analysis [Ref. 6]. For an FP filter with an
FSR around 3800 GHz, our model can include the ACT effects of two adjacent channels
for bit rates up to 2.5 Gb/s. Our numerical results show that this model agrees well with

that in [Ref. 6].
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Figure 2: Spectral characteristics of the Fabry-Perot filter and the approximated
single-pole RC lowpass filter
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Figure 3: Normalized rimpulse response of the Fabry-Perot filter and the approximated
single-pole RC lowpass filter
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Probability of Bit Error

Figure 4: Probability of bit error versus signal-to-noise ratio as a function of normalized
channel spacing for c¢7=5
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Figure 5: Probability of bit error versus signal-to-noise ratio as a function of normalized

channel spacing for c7=10
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Figure 6: Power penalty versus normalized channel spacing as a function of Fabry-Perot

filter parameter cT
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Figure 7: Power penalty versus normalized channel spacing as a function of Fabry-Perot
filter parameter c7 with a fixed threshold a=0.5
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Figure 8: Power penalty versus normalized channel spacing as a function of Fabry-Perot
filter parameter c7 for worst-case with optimal threshold a=(X,+X,)/2
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Figure 9: Power penaity versus normalized channel spacing as a function of Fabry-Perot
filter parameter cT for worst-case with fixed threshold a=0.5
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Figure 10: The normalized optimal threshold versus normalized channel spacing as a
function of Fabry-Perot filter parameter cT
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APPENDIX A

Derivation of Formula




I. INTRODUCTION

Desired channel : Channel 0.
Adjacent channel : Channel k.

=-M/2, ..-1, 1, .. M2 M:even
Bit in channel 0 in i, time interval (i7, (i+1)T) : b,, € {0,1}
Detected bit in channel 0 in (0,T) : b,,€ {0,1}

Bit in channel k in /, time interval (IT+ tg, (I + DT + 1%) : by e/~

bis € {0,e/*}, j= /-1

©; frequency spacing between channel k and channel 0, @k = —® k.

¢y : Pphase offset between channel & and channel 0, uniformly
distributed between (0, 2x).

Ti . time delay between channel k£ and channel 0, O<t;<T.

0
Data signal in channel 0 : bo(#) = X, bo; Pr(t—iT)

i==Lo

- . o .
Data signal in channel k : py(f) = Y. by e/ Pr(t— (IT+ 1))
I=-L
L,, L : positive integers.
— 1,0se<T
Pr(f)={ 0,0therwise

The received signal at the input of the FP filter of channel 0 is :
)= JPboyr & JP byt
b=—MP2

P : received optical power.
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The ¢ .tput of the FP filter is:

¢ o]

ro® = [ h(t-1rydn

= JF [ he-Dpoyar +/F E [ he- e
o k=-M/2 o
= P bog [ h(t=NPr(1)dh
+JP 3 bos | Mt-NPr(h~ T
i=—Lg -0

— -2 T .

WP S LS b [ he-2e 0P - (T4 T
k=-M/2 =L ~

a0

+by-1 [ bt =Wl =P~ (~T+14))dh

+bio [ Bt =W A DPrO —1)dh } (1-3)

h(t) is the equivalent lowpass impulse response of the FP filter of channel 0.
Since the detection interval is 0<t<T, we only need to evaluate

S(t) =r, (), 0<t<T' and write S() as:
S®) = S5() + Sgft) + Sy (9 o<t<T
S; (1) : Desired signal in channel 0, the 1st term (i=0) of (1-3)
S5 (1) - Inter-symbol interference, the 2nd term (i < -1) of (1-3)

S,c(1): Adjacent channel interference, the 3rd term (%) of (1-3)

All evaluatedin 0<t<T.




Il. CALCULATE S, () and S,;, (1)

In this section we are to calculate the easy part of S(t) --- S, () and S, (1).

A. FP filter :

The lowpass equivalent transfer function of FP filter is

"o 1-p 1-4—p _ 1-p 1-4-p
1-pe2WFSR *  1-p 1-pcos(%‘1-fa-)+jpsin(-;.;—£) Cl-p

p : power reflectivity.
A : power absorption loss ( 0 for ideal filter).
FSR : free spectral range.

Since f<<Fsr (for operating frequency range), we can approximate
H () as (assume A =0):

1-p 1-p 1
Hf) = oy =T 2
(-  Wimee 142
FSR(1—
where ¢ = ——ﬁ,—p)

for FP filter, we also have -

BR =2 B foll width at half maximum bandwidth (FWEM)

of half power bandwidth.

Using inverse Founer transtorm, we find

ce ™ >0
h() {0 otherwise
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B. Calculate SE () :

[« o]

S =Pboo | ht—2) Pr() di

—o0

= JPboo [m(t-1)
0

t
= JPT bo,o J‘ce‘”(’“") dh
0

!

— JFb0,0 ce—*" Ieck .
0

— ff;bo,o(l— e~ 0<t<T

(@ For Bit "1" : S, (@

0 = JP(l—e 0<t<T
(b) For Bit "0" : S, (1) = '

0<t<T

S

C. Calculate S50

-1 ©
Su®=JP T bo; [ ht=2)Pr(h~iD) dh
i=-Lo -
-1 (l'h!)T
= ,/-}; 2 by h(t—- ) d\.
i==Lo iT
-1 (i+l.)T
= JF 2 bo, ce(-M g,
i=-Lo iT
-1
= JP e~ E bo,i (e(i+l)cT_ eicT) dr 0<t<T

i==Lo
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IIl. CALCULATE S, (1)

In this section we are to find S, with the procedure :

A. When /L2

B. When /=-1

C. When /=0

D.  Summary for S, (¥
A. Whenl<-2

Integrate the first term of b, (1) i (1-3), we have :

M2 =2
F 8 3 0] -0 o00p 10— (T4 cipa
k=—M/2 I=~L —o

-2 (+1)T 4y,
=PEXby [ ht-n) g,
k£ 1

T+
2 (DT
=PI by [ ce P gortrigy
ko1 IT+t,
-2 (+1)T+1;
= JP z 2 b ", I ce(crjorte) pletjo)h )
ko1 1T+,

-2
= Zk: 21: i e ctormg(cHoRiTyi) (g (yonl _ 1)

-2
— J'}_)- Z z b“ e~ ek e(c+]mk)(IT+'tk)(e(c-|-jmk)T 1) 0<t<T
ko1 144

-2
=JP %‘, }I] P ool (@ (HONITHT) _ getionlTy  gper

l+j-c—
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'.

B. whenl=-1
B-1 I=-1,0<t<T

Integrate the second term of b, (¢) in (1-3):

M2

JP Y by ,j h(t - ) A~ P () — (~T+ 14))d\
k=-—M/2

= VP Ty I h(t— 1) e/,

~T+2;

- P 2 bk—l I ce—(cﬂifwktk) e(c"j‘nk)ldk
k =T+,

oy i o §)(~T-
=JP 2 br-1 e~ el = (e(c+Jo)k)t — eleHor) +‘!k)) O<t<t, (-2)

bk.- op(t-te) _ e—oU=1) g—~(cHo )T
=P X e O<t<t;  (3-2a)

B2 I=-1, 1t <t<T

MR

JP X by lj h(t— 1) &/O-OP () — (=T + t))d\
k=-M
w0

=JP Z by j h(e= &) elord=0g),

T+
= ot €K (cHjo )t —(c4jo )T
‘/_Zb"‘e TE (1-e ) n<t<T @3)
=JP Z it - ==t (] g~(ctjou)T) T <t<T (3-33)
14X
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C. ywhen [=0
C-L 1=0, 0<t<t;

JP X bro J' h(t - N)e/ O~ Pr(h —1;) = 0 0<t<T
k

-0

C2 1=0, 1, <«<T

Integrate the third term of b, () in (1-3):

o0

JP T bro | he—N)e O Pr(d—ti)dh
k —oo

!
= JP X bro | h(t—N)ed—0 g
Tk

k
=JP ;, bro e™ eﬂ'fg (el _e(otonti), o <t<T
- J"ﬁ z _f’_*% (e/O-0) —e~o-W), ’t), <t<T
r YT
D. Summary for S,;(0)
Define : ®(t,,t,) =U,(®-U, (), t20, t1 <t

where U, (1) = {1 x c20

is the unit step function.
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1, 1151519
{ 0, otherwise

then M, 1t,) =
is a unit pulse between ¢, and ¢,.

hence for 0<t<T S, (1) can be written as:

M2
SACI (1) = J'}? z Z 70, )by, et E2Kk e Tkt e(wmk)(le)(e(ﬂJmk)T_ 1) 3-1)
=M =L 2

(3-6)

[P & —t €% (o)t _ (o) =T+tk)
+ JP Z E(O,Tk)bk,_l e 1-07'3!‘- (e O __ o (ctj k) (3-2)
bglz 3

c

2
—Jo N .
[ [P Y w(te, Dbt e™ E__f;_" e(CHOT (] — g~(cHoaT) (3-3)
=M/ 4+

M2 —Jo
P X mw, Dbro e S (VO — ] 35
<

ke=M/2
kr0
= ZO +Z k(— Th-1 17?.1:.0)
Zrs @
Zy = @)

T
Ly1 (33

zr, - (3-5)
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IV. WORST-CASE ANALYSIS

A.  Worst-case for S().

B. Worst-case for # | (7; | S(2) |’ dt - output of integrator.
C. Special worst-case analysis.

D. Special worst-case at the output of the integrator.

=

Worst-case for S
A:1 Worst-case, ISI: b,,;=b, L,=o

From (2-2), we have :

-1
Sw®)=VP b_e (T 1) 3 &

=JPbe(eT-1) ¥ (e~T) o
h=1 h=-i
= JPb_et(eT 1) ;::T
'e-ch <1
- Jfb__e-ct(ecT_ l) e_d'l-.-f
=JPb_e™ 0<t<T
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A2 Worst-case ACI: b,,=b, ,=b,,=b, L=co

we M2 —cl~1;) . =2 .
4 =JPb X {n(0, D= (€T — 1)[ 3 (elevorT)] }
k=12 < fooo
+JPb Y {10, Tk)::lfq (/O _ g=el=1) g~(cHjwnT)
k ¥ hra
+JPb Y {n(t,, T)ﬁ (e~ — g=el=T) g={ctjwnT)
k hr

+ (T, 7)],71-27. (/1) _ g=eli-t)) }

= JP b L n(0, )15 e~ g~(evjonl
k 4=
+~/—ﬁ b ; n(0, 1")1—_‘;717 (ejmk(l-“tk) G e-(c+jo)k)T)

+JPb Z "(Tk, T)—=- (elmk('-"k) — g~oU-T) g=(ctjou)T)

=JPb 3 n(0, DL,IT* (e~ g—etjonT)
k s

+JI_’ b z n(0, T)—-'—.,k (/=) _ g—clt=ty) g~(eHjonT)
k =

=P TnonTm 0T @2
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T
B. Worst-case for & [\s)* d: - output of integrator
0
Output of photodetector : 2 |S ) |
IS = |Sp(t) + Sie®) + S, (0) |

= 101" + [Ss®)° + |Syc; (W) ' + 2Re{ S, () Siy (1) }

+ 2Re{ Sy(§) S,c9) } + 2Re { Sig(t) S,e® } “3)

B-1 From (2-1)

IS3° @) P =|Ss() =Pb,? (1-2¢7 + &), 0<t<T, (4-4)
T
[ 1s5()12dt = PTB3o[1 - 2(1 - e~T) + (1 — e 27)] 4-5)
0

B-2 From (4-1)

ISiq® | = Pb? e, 0<t<T, (4-6)

T
! IS 0)2ds = Z2= (1 - e-27), @)
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B-3 From (4-2)

M2
1S4 012 = Plbl2 X

- Plpl2 T 3 e

k m

IS5, ()12dt = Plb|2 Y,

%2 el"'k(""k) e Jom(i-tm)

(14E) 1522)

k=-M/2 m=-M/2
kw0 0
« Om 0< 1 < 7:
(142%) (157°2)
T
e‘K:k‘k—‘ﬂtﬂ) je’(‘ok—mm)’dt
m (45 A5

k

e-ﬂﬂ kS0 mtm)

PTIb)2
CT Z Z . “k om

m JE—2EY(145=E) (122

(e/@xomT 1) O+ Om

1

F

Or=0pn
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B4
2Re {Sa(t) Si5 (O} =2Pboob-(€ ™ ~e>)  gcicT @1
j 2Re {Sp(t) S ()} dt = T222=(1 - £~T)? “12)
B-5

2Re (300 Sier®} =2PbooRe (b (1-e*)E )

= 2PbooRe {b 2 e (ef“”" e gcrc W13

T .
_"ZRe {Sz(t) :E-I(t)}dt — 21’30.0 Re {b ) etk T ] m)T)} (4-14)
0

® )
4= ck ]Tk 1-j=

B-6

e TOk" c—jo
2Re { (t) ACI(t)} =2Pb-.Re {b% l+j¥ e'( 7 k)t} O <t< T (4_15)

e‘-’"k k

oG —e TN} 416)

j 2Re {St5 () Sacy(O}dt =




C

(874

~—

2

(8]

cs

Special worst-case_analysis

o =2nkl/T, I : positive integer
T = 0

boi=b- € {0,1}

bii=biro=b € {0, &/}

Re{b}e {0, cos ¢ }

16l12 € 0,1}

T
[ I1S8())2dr = PT b2 g [1 - 2(1 — &™)+ 5L(1 - e727)]
0

T
[ Ispe@)zde =225 (1 - e27)
0

in (4-9)
T
I /@ gy = (7> Or=om

j Ry

PTboob_

T
[ 2Re (S3OSHT (B }soddt = 2= (1 - T2
0

2PTboRe{b}

T
J 2Re {SpOSTex() Yt === T - DT A
0 [

T
] 2Re (ST OSGer() }uedt = LT — T3
0

45

1+(ﬂ)2

(4-5)

(4-17)

(4-18)

@12)

(4-19)

(4-20)




D. Special worst-case at the output of the integrator

T
X = & [Is*@lZar
0

= 4 [all terms in section C].

= __e-cT —e~2T
ADPT{ b2 [1- 2(1 )+“ch )

+L (1 -e2%T)

+1lB12+ 2(1-e We) o {b}(b_—boo)]Z 2,,,(,)2} (4-21)
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V. EXACT ANALYSIS - GENERAL CASE

Now, we are to encounter the most complicated situation, for clanty, we
first list the construction talbe, for which we are to follow :

S
l
| i |
Sl St Sp(t)
I
| | |
2r zyt  zZ§ Table 5-1
l
| I
Zo0 Zimt
NG
|
F E D | C B A

l | l | | |
ReAS(0S4ci(0}  2Re{Sp)Suci(D}  2Re{Ss(DS (D} S, (0 ISl 1Ss(I?
|

|
Cc-6 C-5 C-4 C3___C2___C

| | | | | |
2Re{Zy'ZL} 2Re{ZGZE} 2Re(ZIZiy 2T12 Izl |ZI)2
|
|

C33___ C32____ C-3-1
| | |
T*
Table 52 2Re(Z},_ Zx,} 12T 12 127 |2

We first calculate each term in Table (5-2), then integrate it. For each term
belongs to IS4c1()l?, we also discuss two cases : Wi =@, and Wk % Wn .
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Since the computation is very complicated, here we just write down
the results for each term, and omit the intermediate steps.

T
A [lss@l2dr=PTod [1 - 2= 4 (=0 (4-5)
0

B. From (2-2)

-1
1S1s1()|2 = Pe2[ 3 by (e*DeT — gicT)]2 0<t<T (5-1)
=L
T -1
j !S]S[(t)lzdt = %(1 - e—2cT)[ Z bO,i(e(i+l)CT — eieT))2 (5-2)
0 i=Lg

C. Calcuglte |S, (0F - refer to (3-6)

<l

=2 .
; Zg' |2 = Pe-thn(O’ T)I Z Z b Kl e:m::: e(0+]'(0k)(lT-l-'tk)(e(c+j(Dk)T - 1)]2 (5-3)
ko1 v

T 2

T PT . T ; X
j |Zol2dt = 2c—T(1 - 2cT)| 5;" ; bi, el oo e(C"'](Dk)(IT%k)(e(cﬂwk)T_ ])|2 (5-4)
0 G
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_——-—t

C-2 Ts=min (T4 Tm)

e‘j(wkfk‘(ﬂmfm)

—2ct
|Z PZZR(O Ts)e™ bk-b LTIV

(e(cHOL) _ e(o”'jmk)(—T+Tk))

(e(cTOm) _ p(cJOn)-T+Tm)y

e T Ok Tk~ OmTm)

——_m—[ J(@-0m)t _ 5 ~cHOm)t o (cH)(=T+Ts)

=P %‘, 2 (0, T)bi1b;, _,

—e (TN p (TOmN=THTm) | 5=201 o(cHjOLN-T+Tk) e (cTOm)-T+tm )] (5-5)

_[I lzdt-jIZ"‘Izdt
@ k#m, 0% 0y

PLY Y by b? i)
== k-10m \ o
T m P (X122

(e](mk—mm)‘t: — 1)

[("Z" om)

" (e-(oﬂmm )13 - 1 ) e(cﬂmk)(—T i)
+J

+—-— (e_(o'flmk)": -— 1) e("‘]“)m)("T""tm)
l— <

1 (o2, _ (R ~T+7%1) o (O ) ~T4Tm)
> (e De e ] (5-63)
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_

(b) k=mor=0m

_Pr |bi-1 12 [ + 1 (e—-(c+jm KT _ l)e(c+ju)k)(—T+‘tk)
T 2ky2 2k
k l+( c ) c

+1—l'°°-"_ (e-(c-]'mk)’tk - l)e(c—jmk)(-T+Tk)
J=

_%(e’zﬂk - ]) e (o )T+i) plejor)(-T+t)

PT |bg. - |2 1 2ctey ,-2¢T
== cti—5(1-e“%)e
cT % 1+(°:_k)2 [ k 2( )

+2 Re{?'l-‘? (eIl _ gleyor)-T+u)y1] (5-6b)
Vs

C-3 3 terms for |Z7 |

C-3-1 Tg = maX(Tk, Tm)

e—j(m kS0 mTm)

|Z,T,:,_l 2=pPY 3 n(tg, T) e %'by_1 b,
k m

" 104

[e€Hod(1 — g(cHoT) g(Tom)tn(] — g~ (cTomT)] (5-7)

T T
12 12dr= [ 127 12dr:
0 Tg

@k#m, Or#oOm

PT bk,.lb‘ -1 _ _ “Hept—omtm)
=77 z 2 2 = (e 2“8 —-é€ ZCT) . Rt Omy
k m (=)1--7)

[eCHortk(] — g=CH0NT) glejom)tn(] — g~(cjomT )] (5-8a)
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B k=m, or=0n

(5-8b)

PT Vbi1 12 - _ B .
= 2T l-h—(mk)z(l e 2( CT+C1k))[1 +e 20T__2e cTR.e{e}wkT}]

C-3-2

e Kot —omtm)

‘{k‘olz Pzzn(TgaT)bko *

™0 (14550542
[ej(“)k‘m!n)t -— e'(c'*'j")M)t) e(c+jmk)tk - e‘(c"jmk)’ e(c‘j‘” m)tm

+e—2ct e(c+jm %% elcJjo ,,.)t,,,] (5-9)
_[I ,m|2dt—_'.| Z7 12dr:

(a)k:&m Ok % Om

Z Z brob, Lo

mO (1% 1)

[ wkl (ej(mk—ﬂ\m)T - k—mm)fx)
)
ecHopr;
2
elcJomym

( —~(ctjom)T _e‘(“":l"’m)"s)

(e™cToNT _ gcTors)

1%

—-l-(e_ZCT -— e“z"‘z) e(c"ffmk)tke(o‘j‘“m)tm] (5-108)
B k=mor=0mn

PT Ibrol?
=72 :{%)—;.[cT—crk+-;-(l — g2cTHem))

elcop)ty

+2Re { (e ~cjo)T _ e (o k)fk) } ] (5-10b)

+Jc
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C-3-3

e Okt omtm)

2ReAZx, 1230} = 2PRe{ 2 2 (g Dbiibino o)

[e-(C"'j‘Dm)' e(c"’jwk)“k(l — e'(c+jmk)T)

—e~2¢t g(cJOm)Tm e(€+j€°k)fk( ] — e (cveu)T N (5-11)

waluodd  pr kemandk=m

Tk~1“Tko0

T T
[2Re(zE 2T, ydt = [ 2RetZt, 2,
0 R

| R R Rbivil Aot —omtm) ~co )Ty ,(cHor)
Re © -
(EZ by (1-e o).

—(ctjom)tg _ p—(ctjom)T
=(e e )

[

(l+}

__%(e-thg _ e—ZcT) e(c—jmm)‘tm]} : (5-12)
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_——t

C4

2Re{ZTZ5F § = 2PRe{22 3 10, Tm)bisb, - l—"——”—"——’—
oy} (12E)(1-22)

[e~(comglerjoRliT+) (glcHionT _ 1)

—e -2ct e(c—jm m)(—TﬂM)e(c'ka)(lTﬂk) (e (C+j0) k)T — 1)] }

IZRe{Zg ldt = IZRe{ZTZo ydt for k#m and k=m

8{2 2 Z bk ! m—l eﬂ*:kq-omm) ( (cHjo )T _ l)e(c-.:fmk)(lrﬂk)
m |=-L (HEX 122

[a-e*“m”" _ a-e;’“"’ eCTom-T+im)]y

14422
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(O]

e “Hepty—omim) (cHjo )T _ | (c+jo  Y(IT+1;)
2Re{Z{ZT} = 2PRe{Z 2 2 (T 1) vy (e Je
[bisb;, | e 2elcTom)tn(] — g~comT)
+bk,1b;,,0 e‘(c":fmm)t

—bi b:n,O e 2cto(cjon)tm 1 (5-15)

jzRe{z Z ydt = j 2Re{Z}ZL; }dt

e‘)(ﬂk‘k-omtm) (cHar)T _ 1 )e(c-i'-](n eXiT+vy)
{2 § 1.2_:L (1425)12) e

[ biiby ( 2~2Ctm _ e-ZcT)(l —e{cjomT )e(c"j@m)“m
2

+ bl:';b"'o ( —(ctjom)tm _ e—((H_-]&)..)T)

 2tbns (o2t _ p-2eTyglejonyim] ) (5-16)
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c-6

2Re{Z;“Z,T: } The product is only survived when Tm << T;

e—j(u ke mTm)

£yl

= 2PR€{Z Z T (Tm, tk)
k m (
[bi-1b},_, e IO geTan)n(] - g~(cTom]T)

-b k-1 b; - e~ 26t o (cHjo ) -T+%x) o (O m)Tm a- e(cJo ...)T)

+bk’_] b;l,O ej(m"'“"')'

—bk,—-lb; 0 e-(o_jmk)te(o-jmm)tm
—bi_1 b:n 0 e (ctiom)t o(c+j@r)~T+ty)

+bk,—l b;, 0 e—ute(ﬂjwk)(‘rﬂk)e(c']m m)‘tm] }
(5-17)
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T Tx
[2RetZ3 2T vt = [ 2Re{ 23 ZE, yat
0 Tm

”T e}(mktk-wm'm)
- &L Re 2 Z = .
o Re £ m Q5552

[bk.-lb:.-l (e-(c—jmk)‘tm - e-(c"jﬁ)k)‘fk)(] - e‘(c'jm")T)e(c-jm m)m

152

by-1b,, i i '
o 12 m—1 (e_zﬂ,, _ e—ZC'tk)(l — g~ (cJjomT )e(C+Jmk)(-T +7k) g (CJO m)Tm
br-1bpmg

(£-2)

(ej(mk—(om)‘lk _ ej((‘)k‘mm)tm)

_bt'li:-__o (e —(cjor)ytm _ e‘(c"j‘n k)fk)e (cJom)tm
Je

_.”':_;]'_f_i__ﬁ(e—(ij win _ g0 ntE) g (40 )T
b _,b;,' _ _ RV -
k 5 o(e 20T —e Mk)g(""‘]mk)( Tﬂk)e(c Jmm)'tm] } (5—18)
T T
D.  [2Re{Ss(t) Sig(®)} dr = [2S5() Sisu(t) dit
0 0
-1 T
= 2Pb0,0 % bo,i (e(i+l)cT_ eicT) J‘ (e-ct - e—2ct) dt
i=Lo 0
=% b0,0(l —e=* ) Z bo,i (e(z+l)cT_ ech) (5-19)
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E.  2Re{Sp() Saci(t)}

-2 -
= 2PRe{§ZI ‘It(O, T)(e—ct 2ct)bo Obkl Kk (e(c+1mk)T _ l)e(c+jou)(lT+q)
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L
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+2 nley, Dbogbro ol - e T — (™ —e el - (520)

T
[2Re{S3() Suci(®)}at
0

=2 ]
2PT b 'obu()_e-cT)z a3 7 . .
= ="Re{2 X = ‘l = (eCHoNT _ 1) (cHoniT+)
[

+Z bO 0 bk —l € Mm [ (e"’k k—l) (l—e‘(‘-“lﬂk)‘k) (l—e;‘k)z . (C+j0)k)(—T+*tk)]

+Z boobi - 1ewk : [(Ze'“k—ze-‘Tz—e 2kre ZcT) (1- e (ctjo)T )e(cﬂm,)t,,]

Jortk o o/okT _eﬂ'm —(cJop)t;_ (o )T
+E b, obkoe [( )~ l_jz )

__(Ze-ﬁk_h—cT z_e—znk.,.e-ch) e( cﬂ'o)),)‘tk]} (5-21)
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F. 2Re{S;y(t) Saci(®)}
- 2P [ Z bO (e(t+l)cT icT) ]
i=-Lo
Ref E b (0, by ™2 E(e (00T _ [)g(ctjor)iT+w)
kil=—-L 142
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+E (Tk, 1) bko }mk . (e‘(c—Jmk)t — e—2cte(c+1m,,)t,,) }

(5-22)

[2Re (Sig®) Sucs() } dt
0

o |
T biy(1-e%
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VI. EXACT ANALYSIS - SPECI4AL CASE

Now, we put two constraints into all terms of exact analvsis to form a
special case :

b .. .
l. ok = -‘-”FH- I : positive integer.

2.t¢ =71 for all adjacent channel k.

For the purpose of normalization for future use, we set ==, or T, =t=0al
so that MiTy = QT = 2-1;.&0.T= 2nklo

Still, we follow Table 5-2.

T
[ 1S8()12dr = PTB 5[1 - 2= i “‘2‘; iy (6-1)
0

T
B. 2,04 — =2cT (i+1)eT _ LicTy 12
£ |Sis(t)|2de = (1 - e )[’Z_‘Lo bo.(e 20N

C. Special case for ACI

Cl

72””“( eT _ 1) e¥cT pocT gj2mida |2

T
[12512d = (1 - Tl Zb,,,
0

=2
b
= T2l — oy (eeT — 12 | 3 22 ©3)
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C-3 3 terms for |Z717
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c
j 2Re { ZTZE Ydt = I 2Re { Z1Zy }dt

@ kzxm, O #Om

bkjbm l(e(l-i-l)cT IcT)

= 2(6'7)2}) T Re {z Z Z (cT+72nkl)(cT-2nml) *

ech-cﬂmla, 1 e—cT _e(2a—l)cT
| cT+j2rml 2cT I (6-8a)
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— 2 k01
2(07) PTRe {Z ; 7)2+(2w)2

eucﬁﬂnkl'a_l e-cT_e(Za—I)cT
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T T
j 2Re { ZIZT" }dt j 2Re { ZIZT" Ydt

2 (1T _olcT brsby, ’_l(l_eZ(u-I)cT)(l —e~T)
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f 2Re {Z Z¥ }dt = j 2Re {Z ZF Ydt=0 610
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APPENDIX B

Programs




% exact analysis with optimal threshold signal out of the integrator, the signal X contains desired
signal and ACI & ISI and postdetect noise ,The formula for the BER is :

where p(b) =1 (5 ()M

= I A=Xo(®-rr2.. .02 T-Mr2--- Taa2)
...d dtyn..dt
[jM‘O!‘ IM 6{ A i YAb-rr2...dorvn dTopn...dtun

2n T
+ ng IA}‘ { Qb b tin Dy Oy, o dbrn droun...dun ]

Nt

M is the number of adjacent channels. Here we assume all channels have the same phase ¢ and

time delay 7T i.e, ¢k = 4), Tk = T hence for our model the power of (1/27) and (1/T) are fixed
to 1, therefore we only have two integrals and two arguments.

M=4; k=[-M/2:-1 1:M/2];
m=k;
% produce the controlled matrix b to control 64 different bit patterns
ml={ zeros(1,32) ones(1,32) };
m2=[ zeros(1,16) ones(1,16) zeros(1,16) ones(1,16)];
m3=[};
fori=1:4
m3=[m3 [zeros(1,8) ones(1,8)]];
end
m4=(];
for i=1:8
m4=[m4 [zeros(1,4) ones(1,4)]];
end
m5=(];
fori=1:16
mS=[mS [zeros(1,2) ones(1,2)]};
end
m6=(];
for i=1:32
mé6=[m6 zeros(1,1) ones(1,1)];
end
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b=[m]1.:m2;m3;m4;mS;m6]’;

% signal to noise ratio range in dB
RPTN_DB=[10:0.5:25]; %RPTN_dB
ppp=10.~(0.1*RPTN_DB);
lenl=length(ppp);

% solalph function is provided by Professor Randy L. Borchardt

n=10;
[bpx,wik]=grule(n); %bpx=bpy ,wfi=wfy

% single channel
BERO0=0.5*erfc(ppp/870.5),

pp=[]; thresh=[]; %thresh is not normalized threshold

for CT=[5 10 1520] % cT is Fabry-Perot filter parameter
if CT==5
qqq=[2:12 17 20];
elseif CT=10
qqq={3:12 17 20};
elseif CT=15
qqq={4:12 17 20};
elseif CT=20
qqq=[5:12 17 20},
end

pe={]; threshi=[];

for I=qqq
BER={]; thresh2=[];

for RPTN=ppp
ap=linspace(0,182,11); % approiimated thresholds
x3=0; % first few loops to find out the threshold which make the
% BER minimun don't care about the scale

fori=1:64 x3=x3+...
solalph(xx00',0,2*pi,2,bpx,wfx,0,1,2,bpx,wix,ap,b,CT,i, Lk, m, RPTN)+...
solalph("xx11',0,2*pi,2,bpx,wfk,0,1,2,bpx,wix,ap,b,CT,i, Lk, m, RPTN);

end

[val,ind}=min(x3),

lef=ap(ind)-16.6;
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if 1ef<0 ,lef=0; end % to aviod the threshold go beyond the negative side

ap=linspace(lef,ap(ind)+16.6,11),
% two more time to find alpha
x3=0;,

fori=1:64 x3=x3+..
solalph('xx00',0,2*pi,2,bpx,wfx,0,1,2,bpx, wix,ap,b,CT,i,Lk, m, RPTN)+...
solalph('xx11',0,2*pi,2,bpx,wfx,0,1,2,bpx,wfx,ap,b,CT,i,Lk, n, RPTN);
end

fval,ind]=min(x3);
lef=ap(ind)-3.1;

if lef<0 ,lef=0; end

ap=linspace(lef,ap(ind)+3.1,11);
% three more time to find alpha
x3=0;

for i=1:64
x3=x3+...
solalph('xx00',0,2*pi,2,bpx,wfx,0,1,2,bpx,wfx,ap,b,CT,i,Lk, m,RPTN)+...
solalph(xx11',0,2*pi,2,bpx,wfx,0,1,2,bpx, wix,ap,b,CT,i, Lk, m, RPTN);
end

[val,ind]=min(x3);
lef=ap(ind)-0.57,

if lef<0 ,lef=0; end

ap=linspace(lef,ap(ind)+0.57,8),
% four more time to find alpha
x3=0;

for i=1:64
x3=x3+...
solalph("xx00',0,2*pi,2,bpx,wfx,0,1,2,bpx,wfx,ap,b,CT,i,Lk m,RPTN)+...
solalph(‘xx11',0,2%pi,2,bpx,wfx,0, 1,2,bpx,wfx,ap,b,CT,i,Lk, m,, RPTN);
end

[val,ind]=min(x3),
ap=ap(ind),
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% after find optimal alpha use double integration

33=0;
for i=1:64
qq3=qq3-+( dbgquadm('xx00',0,2*pi,2,bpx,wfx,0,1,2,...
bpx,wfx,ap.b,CT,i,Lk, m, RPTN)+...
dbgquadm('xx11',0,2*pi,2,bpx,wix,0,1,2,...
bpx, wfx,ap,b,CT,i,.Lk, m,RPTN) )/(256*pi);
end

BER=[BER qq3]; thresh2=[thresh2 ap],

if qq3<107(-15) %for save time only interesting in 10°(-15)
ii=find(ppp==RPTN);
BER(ii+1:len1)=5*10(-116)*ones( 1,length(ii+1:lenl) ),
thresh2(ii+1:len1)=(ap+2)*ones(1,length(ii+1:lenl) );
break
end
end

pe={pe;BER]; thresh1=[thresh1;thresh2]; -
end

pg=[pp;pe]; thresh=[thresh;thresh1];
en

time2=toc;
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% worse case form appendix setting optimal threshold equal (x0+x1)/2
M=4;
I=linspace(0,6,101); % set 1 value in linspceinteger to find minimum I
RPTN_DB=0:0.2:20; % x-axis dB range
RPTN=10.~(0.1*RPTN_DB); % change to ratio
% single channel
BERO0=0.5*erfc(RPTN/8"0.5);
%find optimal alpha
pp=(}
for CT=[5 10 15 20)
x3=0,
for k=1:0.5*M
x3=x3+2./(1+(2*pi*k*I/CT).”2),
end
x0=(1-exp(-2*CT))/(2*CT)+x3*(1+2*(1-exp(-CT))/CT);
x1=1-2%(1-exp(-CT))/CT+H(1-exp(-2*CT))/(2*CT),
[val,ind]=min(abs(x0-x1));
I=ceil(I(ind));
I=(I(ind)); % our minimum I value

% set different I and to find the BER
ss=I+1:1+10;
BER=(];
for I=ss
x3=0;
for k=1:0.5*M
x3=x3+2/(1+(2*pi*k*I/CT)"2),
end
x0=(1-exp(-2*CT))/(2*CT)+x3*(1+2*(1-exp(-CT))/CT);
x1=1-2*(1-exp(-CT))/CT+(1-exp(-2*CT))/(2*CT);
BER=[BER;0.5*erfc( RPTN*(x1-x0)/8"0.5 ) ;
end
pp=[pp;BER};
end

semilogy(RPTN_DB,BERO.'--,RPTN_DB, pp(;,:))

axis([10 19 10(-15) 1])
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